TRPV1 Channel as New Target for Marine Toxins: Example of Gigantoxin I, a Sea Anemone Toxin Acting Via Modulation of the PLA2 Pathway.
نویسندگان
چکیده
Gigantoxin I, isolated from sea anemone Stichodactyla gigantea, was previously described as the first epidermal growth factor (EGF)-like toxin from natural origin. In this study, we discovered the interaction between the transient receptor potential vanilloid subtype I (TRPV1) channels and gigantoxin I. The TRPV1 channel is a non-selective cation channel involved in pain sensation and is described as pharmacological target of cnidaria venom. Our results highlight the involvement of the epidermal growth factor receptor/phospholipaseA2/arachidonic acid/lipoxygenase (EGFR/PLA2/AA/ LOX) pathway in the indirect activation of TRPV1 channels by gigantoxin I. This is the first time that this pathway is described in the indirect activation of TRPV1 channels by toxins. This knowledge not only gives insights into the possible induced effects by this new group of toxins, but also leads to a better understanding of the regulatory mechanism of TRPV1 channels themselves.
منابع مشابه
Computational Studies of Marine Toxins Targeting Ion Channels
Toxins from marine animals offer novel drug leads for treatment of diseases involving ion channels. Computational methods could be very helpful in this endeavour in several ways, e.g., (i) constructing accurate models of the channel-toxin complexes using docking and molecular dynamics (MD) simulations; (ii) determining the binding free energies of toxins from umbrella sampling MD simulations; (...
متن کاملAPETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels.
A new peptide, APETx1, which specifically inhibits human ether-a-go-go-related gene (HERG) channels, was purified from venom of the sea anemone Anthopleura elegantissima. APETx1 is a 42-amino acid peptide cross-linked by three disulfide bridges and shares 54% homology with BDS-I, another sea anemone K+ channel inhibitor. Although they differ in their specific targets, circular dichroism spectra...
متن کاملA Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs
Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profil...
متن کاملDiversity of folds in animal toxins acting on ion channels.
Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate be...
متن کاملBinding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro.
Iodination of toxin II from the sea anemone Anemonia sulcata gives a labeled monoiododerivative that retains 80% of the original neurotoxicity. This derivative binds specifically to rat brain synaptosomes at 20 degrees C and pH 7.4 with a second-order rate constant of association ka = 4.6 x 10(4) M-1 sec-1 and a first-order rate constant of dissociation kd = 1.1 x 10(-2) sec-1. The binding occu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta chimica Slovenica
دوره 58 4 شماره
صفحات -
تاریخ انتشار 2011